A functional combinatorial central limit theorem

نویسنده

  • A. D. Barbour
چکیده

The paper establishes a functional version of the Hoeffding combinatorial central limit theorem. First, a pre-limiting Gaussian process approximation is defined, and is shown to be at a distance of the order of the Lyapounov ratio from the original random process. Distance is measured by comparison of expectations of smooth functionals of the processes, and the argument is by way of Stein’s method. The prelimiting process is then shown, under weak conditions, to converge to a Gaussian limit process. The theorem is used to describe the shape of random permutation tableaux. AMS subject classification: 60C05, 60F17, 62E20, 05E10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

A Combinatorial Approach to a Model of Constrained Random Walkers

In [1], the authors consider a random walk (Zn,1, . . . , Zn,K+1) ∈ Z K+1 with the constraint that each coordinate of the walk is at distance one from the following one. A functional central limit theorem for the first coordinate is proved and the limit variance is explicited. In this paper, we study an extended version of this model by conditioning the extremal coordinates to be at some fixed ...

متن کامل

On Convergence Rates in the Central Limit Theorems for Combinatorial Structures

Flajolet and Soria established several central limit theorems for the parameter “number of components” in a wide class of combinatorial structures. In this paper, we shall prove a simple theorem which applies to characterize the convergence rates in their central limit theorems. This theorem is also applicable to arithmetical functions. Moreover, asymptotic expressions are derived for moments o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009